
Brush Stroke Parameterized Style Transfer

Uma Maheswara R Meleti
Clemson University
Clemson, SC, USA

umeleti@clemson.edu

Abstract

Computer Vision-based Style Transfer techniques have
been used for many years to represent artistic style. How-
ever, most contemporary methods have been restricted
to the pixel domain; in other words, the style trans-
fer approach has been modifying the image pixels to in-
corporate artistic style. However, real artistic work is
made of brush strokes with different colors on a can-
vas. Pixel-based approaches are unnatural for repre-
senting these images. Hence, this paper discusses a
style transfer method that represents the image in the
brush stroke domain instead of the RGB domain, which
has better visual improvement over pixel-based methods.
https://maheshmeleti.github.io/param-brushstroke/

1. Introduction
Style transfer has been an essential technique in computer
vision, extensively researched for decades. It is now widely
used in various applications such as animated content, fash-
ion design, mobile app photo filters, etc. The technique en-
ables the transformation of images by applying the visual
style of one image (the style image) to another (the con-
tent image). The groundbreaking work of Gatys et al. [3],
which introduced the concepts of content and style loss, has
paved the way for many subsequent developments in the
field. Most works before Gaty’s method and subsequent
methods operate within the pixel domain, where image pix-
els are manipulated to incorporate artistic styles.

However, all these contemporary methods fall short of
mimicking the actual artistic work characterized by brush
strokes and texture on a canvas. Pixel-based methods often
produce images lacking the natural flow and feel of brush
strokes.

In contrast to pixel-based methods, this paper introduces
a novel approach that performs style transfer in the brush
stroke domain rather than the RGB pixel domain. By
parameterizing brush strokes and defining their location,
color, width, and shape, our method aims to generate vi-

sually closer results to hand-painted artwork. This repre-
sentation better preserves the artistic integrity of the origi-
nal style, providing a more realistic and visually appealing
output.

The brush strokes are modeled as a bezier curve with
color, width, and location on the canvas, and these are op-
timized to produce stylized outputs. We have introduced a
renderer that maps brush strokes into pixel values on can-
vas. The render is made differentiable, allowing gradients
to backpropagate and optimize the brush stroke parameters
for producing stylized outputs.

2. Related Work
In the earlier works on style transfer, Efros and Freeman [2]
performed texture synthesis and transfer using image quilt-
ing, an algorithm that stitches small blocks of texture from
an image in a way that resembles the input image. Hertz-
mann et al. [6] proposed a method that uses a pair of im-
ages—one being a filtered version of the other—to learn a
transformation filter. Given an image pair, A and A′, the
algorithm learns how pixel neighborhoods (or textures) in
image A correspond to those in image A′. This learned fil-
ter can then be applied to a new image, B, effectively trans-
ferring the learned texture transformation to the new image.

The most seminal work on style transfer was proposed
by Gatys et al. in their paper Image Style Transfer Using
Convolutional Neural Networks [3]. In this approach, the
content image and style image are used as inputs to gener-
ate a new image that retains the content of the content im-
age while adopting the style of the style image. The method
introduces a novel loss function that separates content and
style components, utilizing a pre-trained neural network to
extract content and style representations from the given im-
ages.

Later, Huang and Belongie improved style transfer us-
ing feed-forward networks for arbitrary style transfer by
introducing Adaptive Instance Normalization (AdaIN) [7].
AdaIN is a layer (or block) that aligns the mean and vari-
ance of the content features with those of the style fea-
tures. This block transforms the extracted features of con-

https://maheshmeleti.github.io/param-brushstroke/


Figure 1. B represents the output of Gatys’ style transfer method, while C is the result of our proposed approach. Visually, our method
produces an image that more closely resembles artistic brush strokes compared to Gatys’. D is the output after pixel optimization, where
the brush strokes are blended, resulting in a more cohesive and refined representation.

tent and style images from a fixed VGG-19 network, and
a decoder is used to invert the AdaIN output back into the
image space.

Traditional content loss measures how well the structure
of the content is preserved in the stylized output. How-
ever, this approach doesn’t always account for the effects
of stylization, which can sometimes result in a blurred or
less accurate rendering, particularly in high-resolution im-
ages. To address this, Sanakoyeu et al. and Kotovenko et
al. introduced style-aware content losses [11] to enhance
stylization quality. These losses modify traditional content
loss by considering the style features, which better balance
content preservation and stylization.

In addition to pixel-based approaches, some methods fo-
cus on rendering brush strokes. Early works in this area
include an interactive technique by Haeberli [4], where a
program follows the cursor across the canvas, samples the
source image at each point to obtain a color, and then paint
a brush stroke of that color. Hertzmann [5] extended this
approach with an automated algorithm that takes a source
image and a list of brush sizes, then paints multiple lay-
ers—one for each brush size—on a canvas to recreate the
source image with a hand-painted effect. In contrast to
these stroke-based rendering methods, some attempts focus
on detecting and extracting brush strokes from paintings.
POET [1] uses classical computer vision techniques, such
as circular filters and orientation phase extractors, to auto-
matically extract brush strokes. Jia Li et al. [9] employ edge
detection and clustering-based segmentation methods to ex-
tract brush strokes, enabling comparisons between artistic
works and other artists’ styles.

Even though there has been a significant amount of work
on artistic style transfer, the authenticity of brush strokes in
paintings is often not preserved on the canvas during styliza-
tion. In contrast to the above-mentioned methods, the pro-

posed method utilizes parameterized brush strokes to retain
the artwork’s original texture and stroke characteristics. Us-
ing these parameterized brush strokes, the method aims to
better preserve the artistic integrity and hand-painted qual-
ity of the source image while applying the desired style.

3. Approach
The proposed method is inspired by the iterative style trans-
fer approach of Gatys et al. [3], where a white noise image
is optimized via gradient descent using content and style
loss (see Section 3.2) to stylize the content image. In the
proposed approach, the optimization process begins by ini-
tializing a neural network with N brush stroke parameters
— location, color, width, and curve shape, where N repre-
sents the desired number of brush strokes to fill the stylized
canvas.

These parameters are iteratively optimized using the
same content and style losses (as discussed in Section 3.2),
ensuring the resulting canvas captures the content of the
original image while applying the style of the reference im-
age. The canvas is generated by a differentiable renderer,
which takes the optimized brush stroke parameters and pro-
duces an RGB image. The brush strokes in this image
are guided by their respective locations, widths, and colors.
Further details on the differentiable renderer can be found
in Section 3.1.

The shape of each brush stroke is modeled using a Bézier
curve, as shown in eq. 1:

B(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2 for t ∈ [0, 1].
(1)

After the brush stroke optimization is completed, a pixel-
level optimization step is applied, akin to Gatys et al.’s style
transfer method. This step blends the brush strokes and adds



Figure 2. The top row shows the results of Gatys’ style transfer approach, while the bottom row displays the output of the proposed method.
In our approach, parameterized brush strokes are passed through a differentiable renderer, which maps them onto the canvas. The content
and style losses are then calculated, and gradients are backpropagated through the renderer to optimize the brush strokes. The image is
taken from [8]

finer texture details to the final image. Both outputs are
presented in the experiments section 4.

3.1. Differentiable Renderer

A differentiable renderer maps a collection of brushstrokes
(trained) parameterized by location, shape, width and color
into pixel values on a canvas. A renderer can be described
as a function:

R : RN×F → RH×W×3

Where N is the number of brush strokes, F is the number
of brushstroke parameters, which is 12 - location: 2, shape:
6 (P0 : 2, P1 : 2, P2 : 2), width : 1, color : 3.

Let’s try to understand how the rendering works with a
simple example of rendering a flat disk parameterized by its
color C, radius R, and location (1, 1, and 2 scalars). We
assume our canvas is grayscale, which is just a 2D matrix
of pixel values (this can be generalized to RGB space). Our
task is to decide whether each pixel belongs to the disk; we
compute the L2 distance matrix D from the disk’s center
and mask all the values with the color C where D < R. If
I1 and I2 are two images obtained for two disks using this
procedure, we can get the final image as I1 + I2, assuming
the disks do not overlap.

If the regions overlap, we compute an assignment ma-
trix A, where the assignment is made to a particular disk
if the distance is less than the other disk’s. If there are
two disks with distance matrices D1 and D2, we define
A := {1 if D1 ≤ D2, 0 otherwise}. This operation can
be generalized to N objects.

A(i, j, n) :=

{
1 if Dn(i, j) < Dk(i, j)∀k ̸= n,

0 otherwise.

The final image for N discs I1, . . . , IN is computed as

I(i, j) :=

N∑
n=1

In(i, j) ·A(i, j, n)

To render the disk, we calculate distance matrices,
which form the cornerstone of the rendering process. The
same principle applies to rendering brushstrokes (or Bézier
curves): we compute the distance matrix DB by point sam-
pling S equidistant points p1, . . . , pS along the curve and
mask the values that are less than the brushstroke’s width.

For practical implementation, the renderer must be dif-
ferentiable. However, the masking and assignment oper-
ations are discontinuous, making them non-differentiable.
To resolve this, we make both operations continuous by us-
ing a sigmoid function for masking and a softmax function
with high temperature for assignment. Additionally, com-
puting the distances between each brush stroke and every
pixel is computationally expensive and redundant, as each
brush stroke only affects nearby areas of the canvas. There-
fore, the distance computation is limited to the K nearest
brush strokes.

3.2. Loss Functions

Content and style losses are essential for neural style trans-
fer, guiding the balance between preserving the content im-



age’s structure and applying the style image’s artistic fea-
tures.

Content Loss: The content loss ensures that the gen-
erated image G retains the structure of the content image
C. It is computed by comparing the feature maps ϕl of the
content and generated images at a specific layer l of a pre-
trained network (e.g., VGG-19):

Lcontent(C,G) =
1

2

∑
i,j

(ϕl(G)ij − ϕl(C)ij)
2 (2)

Style Loss: The style loss measures how well the gen-
erated image captures the style image S. It uses the Gram
matrix Gl(x) of feature maps to compute correlations be-
tween filter responses. The style loss is defined as:

Lstyle(S,G) =
∑
l

wl ·
1

4N2
l M

2
l

∑
i,j

(Gl(G)ij −Gl(S)ij)
2

(3)
where Nl and Ml are the number of filters and the spatial

size of the feature maps at layer l, and wl is the weight for
each layer.

Total Loss: The total loss Ltotal is a weighted sum of the
content and style losses:

Ltotal = αLcontent + βLstyle (4)

where α and β control the trade-off between content
preservation and style transfer.

4. Experiments and Results
The model is trained on Nvida-a100 GPUs using the py-
torch framework. Optimizing 5000 brush strokes with 10
samples per curve took around 138 seconds.

Figure 1 presents the results from both methods, where
our approach yields visually superior representations that
are artistically closer to hand-painted works. Figure 3 is the
zoomed images highlighting the brush strokes generated by
our method, followed by the pixel optimization applied to
enhance the output.

Figure 3. Zoomed view of brush strokes with pixel optimization.

The pixel-optimized output blends the brush strokes,
producing a realistic image that mimics the texture and look
of a painting on canvas.

Figure 4 is the result of applying our algorithm to a hu-
man image. While the algorithm effectively captures the
brushstroke representation, finer details, such as facial fea-
tures, are lost.

Figure 4. Style transfer applied to a human image.

This indicates that the current method struggles to pre-
serve intricate details, suggesting the need for improve-
ments in handling high-frequency content.

5. Conclusions
In this paper, we proposed a new approach for representing
artistic style by switching from pixel-based methods to pa-
rameterized brush strokes for more natural representations.
An explicit rendering mechanism is implemented that can
be applied beyond style transfer.

Even though we obtained a brush stroke-based repre-
sentation, qualitative results indicate some fine details of
the content are missing. Implementing CNN-based feed-
forward architectures can help mitigate these issues, as the
convolutional inductive biases in CNNs effectively preserve
rich information on image attributes. By leveraging the hi-
erarchical feature extraction capabilities of CNNs, we can
better capture subtle textures and fine-grained information.

Integrating image and text-based methods such as CLIP
[10] can significantly advance research by enabling more
sophisticated image editing techniques, offering users finer
control over the generated results to better align with their
specific goals with the help of language.



References
[1] Igor Berezhnoy, Eric Postma, and H. Herik. Automatic ex-

traction of brushstroke orientation from paintings : Pppoet:
Prevailing orientation extraction technique. Machine Vision
and Applications, 20:1–9, 2008. 2

[2] Alexei A. Efros and William T. Freeman. Image quilting for
texture synthesis and transfer. Proceedings of SIGGRAPH
2001, pages 341–346, 2001. 1

[3] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
Image style transfer using convolutional neural networks.
In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2414–2423, 2016. 1, 2

[4] Paul Haeberli. Paint by numbers: abstract image repre-
sentations. In Proceedings of the 17th Annual Conference
on Computer Graphics and Interactive Techniques, page
207–214, New York, NY, USA, 1990. Association for Com-
puting Machinery. 2

[5] Aaron Hertzmann. Painterly rendering with curved brush
strokes of multiple sizes. In Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Tech-
niques, page 453–460, New York, NY, USA, 1998. Asso-
ciation for Computing Machinery. 2

[6] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian
Curless, and David H. Salesin. Image Analogies. Association
for Computing Machinery, New York, NY, USA, 1 edition,
2023. 1

[7] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization, 2017. 1

[8] Dmytro Kotovenko, Matthias Wright, Arthur Heimbrecht,
and Björn Ommer. Rethinking style transfer: From pixels
to parameterized brushstrokes, 2021. 3

[9] Jia Li, Lei Yao, Ella Hendriks, and James Z. Wang. Rhyth-
mic brushstrokes distinguish van gogh from his contempo-
raries: Findings via automated brushstroke extraction. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
34(6):1159–1176, 2012. 2

[10] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision, 2021. 4

[11] Artsiom Sanakoyeu, Dmytro Kotovenko, Sabine Lang, and
Björn Ommer. A style-aware content loss for real-time hd
style transfer, 2018. 2


	. Introduction
	. Related Work
	. Approach
	. Differentiable Renderer
	. Loss Functions

	. Experiments and Results
	. Conclusions

